Match the siblings

[name_m]Real[/name_m] sibling sets I know 10 sets with 2 siblings

Group 1

[name_u]James[/name_u], [name_u]Charlie[/name_u], [name_u]Ryder[/name_u], [name_f]Maesyn[/name_f], [name_u]Jackson[/name_u], [name_m]Titus[/name_m], [name_f]Lillian[/name_f], [name_f]Charlotte[/name_f], [name_u]Ashley[/name_u], [name_u]Zoe[/name_u]

Group 2:
[name_f]Julianna[/name_f], [name_u]Camden[/name_u], [name_u]Gray[/name_u], [name_u]James[/name_u], [name_u]Walter[/name_u], [name_u]Jackson[/name_u], [name_f]Sofia[/name_f], [name_m]Ford[/name_m], [name_u]Bear[/name_u], [name_u]Jack[/name_u]

[name_u]James[/name_u] & [name_u]Walter[/name_u]
[name_u]Charlie[/name_u] & [name_u]Jack[/name_u]
[name_u]Ryder[/name_u] & [name_m]Ford[/name_m]
[name_f]Maesyn[/name_f] & [name_u]Camden[/name_u]
[name_u]Jackson[/name_u] & [name_u]James[/name_u]
[name_m]Titus[/name_m] & [name_u]Bear[/name_u]
[name_f]Lillian[/name_f] & [name_f]Julianna[/name_f]
[name_f]Charlotte[/name_f] & [name_f]Sofia[/name_f]
[name_u]Ashley[/name_u] & [name_u]Jackson[/name_u]
[name_u]Zoe[/name_u] & [name_u]Gray[/name_u]

[name_u]James[/name_u] & [name_u]Camden[/name_u]
[name_u]Charlie[/name_u] & [name_u]James[/name_u]
[name_u]Ryder[/name_u] & [name_u]Bear[/name_u]
[name_f]Maesyn[/name_f] & [name_u]Jackson[/name_u]
[name_m]Titus[/name_m] & [name_u]Walter[/name_u]
[name_f]Lillian[/name_f] & [name_u]Jack[/name_u]
[name_f]Charlotte[/name_f] & [name_f]Julianna[/name_f]
[name_u]Ashley[/name_u] & [name_u]Gray[/name_u]
[name_u]Zoe[/name_u] & [name_m]Ford[/name_m]

This is fun! The siblings are split so that there’s one on gp 1 & the other in gp 2, is that right?

If so, I guess…

[name_u]James[/name_u] & [name_f]Sofia[/name_f]
[name_u]Charlie[/name_u] & [name_u]James[/name_u] (a sibset I know :slight_smile: )
[name_u]Ryder[/name_u] & [name_u]Camden[/name_u]
[name_f]Maesyn[/name_f] & [name_u]Bear[/name_u]
[name_u]Jackson[/name_u] & [name_u]Gray[/name_u]
[name_m]Titus[/name_m] & [name_m]Ford[/name_m]
[name_f]Lillian[/name_f] & [name_f]Julianna[/name_f]
[name_f]Charlotte[/name_f] & [name_u]Jack[/name_u]
[name_u]Ashley[/name_u] & [name_u]James[/name_u]
[name_u]Zoe[/name_u] & [name_u]Walter[/name_u]

[name_u]James[/name_u] & [name_u]Jack[/name_u]
[name_u]Charlie[/name_u] & [name_u]Camden[/name_u]
[name_u]Ryder[/name_u] & [name_m]Ford[/name_m]
[name_f]Maesyn[/name_f] & [name_u]Gray[/name_u]
[name_u]Jackson[/name_u] & [name_u]Walter[/name_u]
[name_m]Titus[/name_m] & [name_u]Bear[/name_u]
[name_f]Lillian[/name_f] & [name_u]Jackson[/name_u]
[name_f]Charlotte[/name_f] & [name_f]Julianna[/name_f]
[name_u]Zoe[/name_u] & [name_u]James[/name_u]

[name_u]James[/name_u] and [name_u]Walter[/name_u]
[name_u]Charlie[/name_u] and [name_u]Bear[/name_u]
[name_u]Ryder[/name_u] and [name_u]Jackson[/name_u]
[name_f]Maesyn[/name_f] and [name_u]Gray[/name_u]
[name_u]Jackson[/name_u] and [name_u]Camden[/name_u]
[name_m]Titus[/name_m] and [name_f]Sofia[/name_f]
[name_f]Lillian[/name_f] and [name_u]James[/name_u]
[name_f]Charlotte[/name_f] and [name_m]Ford[/name_m]
[name_u]Ashley[/name_u] and [name_f]Julianna[/name_f]
[name_u]Zoe[/name_u] and [name_u]Jack[/name_u]

James & Walter
Charlie & Jack
Ryder & Ford
Maesyn & Camden
Jackson & Julianna
Titus & Bear
Lillian & Jackson
Charlotte & Sofia
Ashley & James
Zoe & Gray

[name_f]Lillian[/name_f] & [name_u]Walter[/name_u]
[name_u]Zoe[/name_u] & [name_u]Gray[/name_u]
[name_f]Maesyn[/name_f] & [name_u]Camden[/name_u]
[name_u]Jackson[/name_u] & [name_f]Julianna[/name_f]
[name_f]Charlotte[/name_f] & [name_u]Jackson[/name_u]
[name_u]Charlie[/name_u] & [name_u]James[/name_u]
[name_u]Ryder[/name_u] & [name_m]Ford[/name_m]
[name_u]James[/name_u] & [name_f]Sofia[/name_f]
[name_u]Ashley[/name_u] & [name_u]Jack[/name_u]
[name_m]Titus[/name_m] & [name_u]Bear[/name_u]

yes @EdgeOfTheMeadow

1 Like