[name_m]Real[/name_m] sibling sets I know 10 sets with 2 siblings
Group 1
[name_u]James[/name_u], [name_u]Charlie[/name_u], [name_u]Ryder[/name_u], [name_f]Maesyn[/name_f], [name_u]Jackson[/name_u], [name_m]Titus[/name_m], [name_f]Lillian[/name_f], [name_f]Charlotte[/name_f], [name_u]Ashley[/name_u], [name_u]Zoe[/name_u]
Group 2:
[name_f]Julianna[/name_f], [name_u]Camden[/name_u], [name_u]Gray[/name_u], [name_u]James[/name_u], [name_u]Walter[/name_u], [name_u]Jackson[/name_u], [name_f]Sofia[/name_f], [name_m]Ford[/name_m], [name_u]Bear[/name_u], [name_u]Jack[/name_u]
[name_u]James[/name_u] & [name_u]Walter[/name_u]
[name_u]Charlie[/name_u] & [name_u]Jack[/name_u]
[name_u]Ryder[/name_u] & [name_m]Ford[/name_m]
[name_f]Maesyn[/name_f] & [name_u]Camden[/name_u]
[name_u]Jackson[/name_u] & [name_u]James[/name_u]
[name_m]Titus[/name_m] & [name_u]Bear[/name_u]
[name_f]Lillian[/name_f] & [name_f]Julianna[/name_f]
[name_f]Charlotte[/name_f] & [name_f]Sofia[/name_f]
[name_u]Ashley[/name_u] & [name_u]Jackson[/name_u]
[name_u]Zoe[/name_u] & [name_u]Gray[/name_u]
Elsker
September 13, 2023, 10:57am
3
[name_u]James[/name_u] & [name_u]Camden[/name_u]
[name_u]Charlie[/name_u] & [name_u]James[/name_u]
[name_u]Ryder[/name_u] & [name_u]Bear[/name_u]
[name_f]Maesyn[/name_f] & [name_u]Jackson[/name_u]
[name_m]Titus[/name_m] & [name_u]Walter[/name_u]
[name_f]Lillian[/name_f] & [name_u]Jack[/name_u]
[name_f]Charlotte[/name_f] & [name_f]Julianna[/name_f]
[name_u]Ashley[/name_u] & [name_u]Gray[/name_u]
[name_u]Zoe[/name_u] & [name_m]Ford[/name_m]
This is fun! The siblings are split so that there’s one on gp 1 & the other in gp 2, is that right?
If so, I guess…
[name_u]James[/name_u] & [name_f]Sofia[/name_f]
[name_u]Charlie[/name_u] & [name_u]James[/name_u] (a sibset I know )
[name_u]Ryder[/name_u] & [name_u]Camden[/name_u]
[name_f]Maesyn[/name_f] & [name_u]Bear[/name_u]
[name_u]Jackson[/name_u] & [name_u]Gray[/name_u]
[name_m]Titus[/name_m] & [name_m]Ford[/name_m]
[name_f]Lillian[/name_f] & [name_f]Julianna[/name_f]
[name_f]Charlotte[/name_f] & [name_u]Jack[/name_u]
[name_u]Ashley[/name_u] & [name_u]James[/name_u]
[name_u]Zoe[/name_u] & [name_u]Walter[/name_u]
[name_u]James[/name_u] & [name_u]Jack[/name_u]
[name_u]Charlie[/name_u] & [name_u]Camden[/name_u]
[name_u]Ryder[/name_u] & [name_m]Ford[/name_m]
[name_f]Maesyn[/name_f] & [name_u]Gray[/name_u]
[name_u]Jackson[/name_u] & [name_u]Walter[/name_u]
[name_m]Titus[/name_m] & [name_u]Bear[/name_u]
[name_f]Lillian[/name_f] & [name_u]Jackson[/name_u]
[name_f]Charlotte[/name_f] & [name_f]Julianna[/name_f]
[name_u]Zoe[/name_u] & [name_u]James[/name_u]
[name_u]James[/name_u] and [name_u]Walter[/name_u]
[name_u]Charlie[/name_u] and [name_u]Bear[/name_u]
[name_u]Ryder[/name_u] and [name_u]Jackson[/name_u]
[name_f]Maesyn[/name_f] and [name_u]Gray[/name_u]
[name_u]Jackson[/name_u] and [name_u]Camden[/name_u]
[name_m]Titus[/name_m] and [name_f]Sofia[/name_f]
[name_f]Lillian[/name_f] and [name_u]James[/name_u]
[name_f]Charlotte[/name_f] and [name_m]Ford[/name_m]
[name_u]Ashley[/name_u] and [name_f]Julianna[/name_f]
[name_u]Zoe[/name_u] and [name_u]Jack[/name_u]
James & Walter
Charlie & Jack
Ryder & Ford
Maesyn & Camden
Jackson & Julianna
Titus & Bear
Lillian & Jackson
Charlotte & Sofia
Ashley & James
Zoe & Gray
[name_f]Lillian[/name_f] & [name_u]Walter[/name_u]
[name_u]Zoe[/name_u] & [name_u]Gray[/name_u]
[name_f]Maesyn[/name_f] & [name_u]Camden[/name_u]
[name_u]Jackson[/name_u] & [name_f]Julianna[/name_f]
[name_f]Charlotte[/name_f] & [name_u]Jackson[/name_u]
[name_u]Charlie[/name_u] & [name_u]James[/name_u]
[name_u]Ryder[/name_u] & [name_m]Ford[/name_m]
[name_u]James[/name_u] & [name_f]Sofia[/name_f]
[name_u]Ashley[/name_u] & [name_u]Jack[/name_u]
[name_m]Titus[/name_m] & [name_u]Bear[/name_u]